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Abstract

We use the forced complex Ginzburg-Landau (CGL) equation to study resonance in
oscillatory systems periodically forced at approximately twice the natural oscillation fre-
quency. The CGL equation has both resonant spatially uniform solutions and resonant two-
phase standing-wave pattern solutions such as stripes or labyrinths. The spatially uniform
solutions form a tongue-shaped region in the parameter plane of the forcing amplitude and
frequency. But the parameter range of resonant standing-wave patterns does not coincide
with the tongue of spatially uniform oscillations. On one side of the tongue the boundary
of resonant patterns is inside the tongue and is formed by the Nonequilibrium Ising Bloch
bifurcation and the instability to traveling waves. On the other side of the tongue the reso-
nant patterns extend outside the tongue forming a parameter region in which standing-wave
patterns are resonant but uniform oscillations are not. The standing-wave patterns in that
region appear similar to those inside the tongue but the mechanism of their formation is
different. The formation mechanism is studied using a weakly nonlinear analysis near a
Hopf-Turing bifurcation. The analysis also gives the existence and stability regions of the
standing-wave patterns outside the resonant tongue. The analysis is supported by numerical
solutions of the forced complex Ginzburg-Landau equation.
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1 Introduction

Resonance phenomena in forced oscillatory systems have mostly been studied in
the context of a single oscillator such as the pendulum [1–3]. The resonant behavior
is manifested by the ability of the system to adjust its natural oscillation frequency
to a rational fraction of the forcing frequency. Thus, the system may respond, or
lock, in ratios1/n (n = 1, 2, 3, ...) of the forcing frequency and at additional frac-
tions determined by the Farey hierarchy [4]. The natural frequency range, where
the system locks to the forcing frequency, increases with the forcing amplitude and
forms a tongue-shaped region (Arnol’d tongues) in the amplitude-frequency plane.
The parameter region pertaining to oscillations at1/n the forcing frequency is oc-
casionally referred to as then : 1 resonance tongue.

More recently resonance phenomena have been studied in spatially extended sys-
tems using uniform time periodic forcing [5–21]. These systems demonstrate an-
other property of resonance phenomena; although any spatial point in the system
oscillates at the same fraction1/n of the forcing frequency, the phase of oscillation
may assume one ofn different values and may vary from one spatial domain to
another [8,22]. In the 2:1 resonance there are two stable phases of oscillations (dif-
fering from one another byπ) and fronts that shift the oscillation phase byπ may
appear. In the 4:1 resonance there are four stable phases and two types of fronts
may appear; fronts can shift the oscillation phases by eitherπ or π/2. Along with
these fronts spatial patterns, such as spiral waves and standing-wave labyrinths,
may appear [10,12,20].

In this paper we study to the 2:1 resonance case and the conditions for resonant be-
havior in spatially extended systems as compared with those of a single oscillator.
The study is based on a variant of the complex Ginzburg–Landau (CGL) equation
which describes the dynamics of the oscillation amplitude near the Hopf bifurca-
tion. Among our findings are non-resonant patterns in a range of resonant uniform
oscillations and resonant patterns in a range where uniform oscillations are not res-
onant. The results derived in this paper extend the analytical and numerical results
presented in Ref. [20].

The paper is organized as follows. In Section 2 we derive the boundaries of the
2:1 resonance tongue for uniform oscillations. This is the domain where the system
is bistable and front solutions may exist. In Section 3 we study two front instabil-
ities and the patterns that arise from them. The results are used to determine the
range where resonant patterns appear inside the 2:1 resonant tongue of uniform os-
cillations. In Section 4 we determine the conditions for the prevalence of resonant
standing wavesoutsidethe resonance tongue and show that the formation mech-
anism differs from that of standing waves inside the tongue. We conclude with a
summary and a discussion of the results in Section 5.
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2 The 2:1 resonance tongue

Consider an extended system undergoing a Hopf bifurcation to uniform oscillations
at a frequencyΩ. The system is now uniformly forced at a frequencyωf ≈ 2Ω. Near
the Hopf bifurcation a typical dynamical variable of the system can be written as

u = u0 +
[
Aeiωt + c.c.

]
+ . . . , (1)

whereu0 is the value ofu when the system is at the rest state undergoing the Hopf
bifurcation,A is a complex amplitude,ω := ωf/2, c.c. stands for the complex
conjugate, and the ellipses denote higher order terms. The amplitude of oscillation
A is slowly varying in space and time and for weak forcing is described by the
forced CGL equation [23–26]

∂tA = (µ+ iν)A+ (1 + iα)∇2A− (1 + iβ)|A|2A+ γA∗ . (2)

In this equationµ represents the distance from the Hopf bifurcation,ν = Ω−ωf/2
is the detuning,α represents dispersion,β represents nonlinear frequency correc-
tion,γ is the forcing amplitude, and∇2 is two-dimensional Laplacian operator. The
termA∗ is the complex conjugate ofA and describes the effect of the weak periodic
forcing [23]. Throughout this paper we will mostly be concerned with Eq. (2) for
the amplitude of oscillations. The oscillating system in Eq. (1) will be referred to
as the “original system.”

To find the resonance boundary of uniform oscillations we writeA = R exp (iφ)
and consider uniform solutions of Eq. (2). The amplitudeR and the phaseφ obey
the equations

Ṙ=µR−R3 + γR cos 2φ , (3a)

φ̇= νR− βR3 − γR sin 2φ. (3b)

In 2:1 resonance the system oscillates at exactly half of the forcing frequency. Ac-
cording to Eq. (1) this condition is satisfied by stationary solutions ofR andφ.
These solutions appear in a pair of saddle node bifurcations atγ = γb [7], where

γb =
|ν − µβ|√

1 + β2
, (4)

as Fig. 1(a) shows. The form of the resonance boundary changes to

γb =
√
µ2 + (µβ − 2ν)2/2

for ν < µ(β2 − 1)/(2β) (assumingβ > 0 which is used here). For further details
see Ref. [27]. The two stable solutions are given by
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φ− =
1

2
arcsin

ν − β (µ̃+ γ̃)

γ
, (5a)

φ+ =φ− + π , (5b)

whereµ̃ = (µ+νβ)/(1+β2), γ̃ =
√
γ2/(1 + β2)− ν̃2, andν̃ = (ν−µβ)/(1+β2).

We refer to the solutionsφ− andφ+ as “phase locked” solutions or “phase states.”
The existence range of these solutions,γ ≥ γb, forms a V-shape region, here-
after the “2:1 resonance tongue.” The 2:1 resonance tongue forβ = 0 is shown in
Fig. 1(b). Forβ 6= 0 the tongue gets wider and is shifted to the right (β > 0) or to
the left(β < 0). Outside the resonance tongue uniform solutions describe unlocked
oscillations.
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Fig. 1. (a) A pair of saddle-node bifurcation diagrams showing the appearance of the four
stationary phase solutions of Eq. (5a) as the forcing amplitudeγ is increased pastγb for a
fixed detuning valueν. The solid (dashed) curves represent stable (unstable) solutions. (b)
The resonance tongue in theν–γ plane (shaded region) inside which the original system
responds at exactly half the forcing frequency. Also shown is the NIB bifurcation threshold
(dotted curve) inside the resonance tongue, obtained by numerically solving the one dimen-
sional eigenvalue problem of Eq. (8) for a front solution of Eq. (2). The NIB bifurcation
threshold corresponds to a zero value of the largest real part of the eigenvalueλ (not includ-
ing the zero eigenvalue associated with translation) as the two insets show,γ = 0.18. Above
the NIB bifurcation threshold fronts bi-asymptotic to the two stable phase states,φ− and
φ+, are stationary. The points “D” (γ = 0.4, ν = −0.3) and “T” (γ = 0.4, ν = −0.38)
represent forcing and detuning values where the Ising fronts are stable and unstable to NIB
bifurcation, respectively. Parameters:µ = 0.5, β = 0, α = 0.5.

For the analysis that follows we rewrite Eq. (2) in terms of the real and imaginary
parts of the amplitude,U := ReA andV := ImA: ∂tU

∂tV

 = (L −N )

U
V

 , (6)
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whereL is the linear operator

L =

 (µ+ γ) +∇2 −ν − α∇2

ν + α∇2 (µ− γ) +∇2

 ,
andN includes the nonlinear terms

N =
(
U2 + V 2

)  1 −β

β 1

 .

3 Spatial patterns inside the 2:1 resonance tongue

Inside the 2:1 resonance tongue the system is bistable and front solutions, bi-
asymptotic to the two stable phase states, exist. Patterns in bistable systems are
strongly affected by two types of front instabilities [28,29]. The first is the Nonequi-
librium Ising Bloch (NIB) bifurcation in which a stationary “Ising” front solution
loses stability to a pair of counter-propagating “Bloch” front solutions. This insta-
bility designates a transition from stationary patterns to traveling waves. The second
front instability is a transverse instability (occasionally also referred to as modula-
tional or morphological instability) where wiggles along the front line grow in time.
A transverse front instability of an Ising front often leads to stationary labyrinthine
patterns. In the context of forced oscillations the NIB bifurcation has been studied
in Refs. [7,30–33] and the transverse instability in Ref. [17]. In the following we
extend these earlier works and use the results to delineate the range within the 2:1
resonance tongue where resonant patterns reside.

Finite wave-number instabilities of the uniform phase states may also lead to pat-
tern formation inside the 2:1 resonance tongue. A linear stability analysis of the
phase states indeed reveals such an instability but in a very narrow range near the
2:1 resonance boundary. The instability leads to large amplitude stationary pat-
terns representing resonant oscillations of the original system. For further details
the reader is referred to Ref. [27]. In the following analyzes performed inside the
tongue we assume a parameter range for which the phase states are stable to nonuni-
form perturbations.

3.1 The Nonequilibrium Ising Bloch (NIB) bifurcation

In the case,α = β = 0, the NIB bifurcation occurs atγNIB =
√
ν2 + (µ/3)2 [32,33].

To evaluate the NIB bifurcation across the resonance tongue for non-zeroα or β
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values we use a numerical eigenvalue analysis of the Ising front solutionI(x). In-
serting the form U(x, t)

V (x, t)

 = I(x) + e(x)eλt , (7)

in Eq. (6) and linearizing aroundI(x) we obtain

[J(U, V )− λI] e = 0 , (8)

whereJ(U, V ) is the Jacobian of Eq. (6) atI(x), λ is the eigenvalue,e(x) is the
eigenvector,I is the identity matrix, and the form ofI(x) is obtained by numerical
integration of Eq. (6). Solving (8) forλ we identify the NIB bifurcation threshold
as the valueγ = γNIB(ν) at which the largest real part of the eigenvalueλ is
zero (excluding the zero eigenvalue associated with the translation mode). The NIB
bifurcation threshold in theν − γ plane and forα > 0 is shown in Fig. 1(b).

For γb < γ < γNIB spiral waves prevail. Figure 2 shows numerical solutions of
Eq. (6) in this range displaying the development of rotating spiral waves starting
from random perturbations of the unstable rest stateA = 0. Since the amplitudeA
oscillates at the spiral frequencyωs, the original system [see Eq. (1)] oscillates at a
frequencyωf/2 + ωs rather thanωf/2 and therefore is out of resonance.

As the NIB bifurcation is traversed stationary Ising fronts appear. The same ran-
dom perturbations of the unstable rest state (as in Fig. 2) now lead to coarsening
and to the formation of larger domain patterns as Fig. 3 shows. Since the domain
boundaries approach stationary planar Ising fronts the patterns represent resonant
oscillations. We now turn over to the high frequency side of the 2:1 resonance
tongue.

3.2 Transverse instability of the Ising front

As ν is increased, and the high frequency boundary of the 2:1 resonance tongue
is approached, a transverse front instability is encountered [17,20]. The onset of
this instability,γ = γT (γT > γNIB), is shown by the dashed line in Fig. 4. The
significance of the transverse front instability is demonstrated in Fig. 5; a planar
Ising front evolves to a labyrinthine pattern through fingering and tip splitting. The
asymptotic pattern is stationary and therefore represents resonant oscillations.

We evaluated the transverse instability boundary by deriving a linear evolution
equation for transverse front modulations as we now describe. Equation (6), for
α = β = 0 (but arbitraryν), has the exact Ising front solution
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(c)

(f)(e)(d)

(b)(a)

Fig. 2. A numerical solution of Eq. (6) in the rangeγb < γ < γNIB [point “T” in Fig. 1(b)],
showing the development of spiral waves from small random perturbations around the un-
stable rest state,U = V = 0. The pattern corresponds to unlocked spiral waves in the
original system sinceω 6= ωf/2. The frames (a)-(f) show a grey-scale map of theU field
at successive time steps:t = 1.5, 8.5, 19, 90, 2000, 6000. In all of the gray-scale figures
darker hues denote higherU values. Neumann boundary conditions were used on a domain
x = [0, 80], y = [0, 80]. Parameters are as in Fig. 1(b),ν = −0.38, γ = 0.4.

U0 = I(x) cosφ , (9a)
V0 = I(x) sinφ , (9b)

whereφ = 1/2 arccos (γ̂/γ), γ̂ =
√
γ2 − ν2, andI(x) is given by

I(x) = ±
√
µ+ γ̂ tanh

√
µ+ γ̂

2
x. (10)

For α ∼ β ∼ ε � 1, whereε is an auxiliary small parameter, we expand the
solution of Eq. (6) around Eq. (9) as follows:

U(x, y, t) =U0(χ) + εU1(χ) + ε2U2(χ) + . . . , (11a)

V (x, y, t) =V0(χ) + εV1(χ) + ε2V2(χ) + . . . , (11b)

whereχ = x − Λ(Y, T1, T2, . . . ) is the longitudinal spatial coordinate in a frame
centered at the front position,x = Λ(Y, T1, T2, . . . ), Y =

√
εy is the transverse

spatial coordinate scaled to describe weak dependence, andTi = εit (i = 1, 2, . . . )
are slow time coordinates. In terms of these coordinates partial derivatives in Eq. (6)
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(c)

(f)(e)(d)

(b)(a)

Fig. 3. A numerical solution of Eq. (6) in the rangeγNIB < γ [point “D” in Fig. 1(b)]
showing the coarsening of small domains into larger ones separated by a planar Ising front.
The asymptotic state is resonant since the Ising front is stationary and any point in the
original system it oscillates at exactlyω = ωf/2. The frames (a)-(f) show theU field at
successive time steps:t = 1.5, 8.5, 19, 90, 350, 850. Neumann boundary conditions
were used on a domainx = [0, 80], y = [0, 80]. Parameters are as in Fig. 1(b),ν = −0.3,
γ = 0.4.

take the forms
∂y =

√
ε∂Y ,

∂t = ε∂T1 + ε2∂T2 + . . . .
(12)

Inserting Eqs. (11) in Eq. (6) and considering small transverse perturbations,Λ ∼ ε,
we obtain at orderε

M

U1

V1

 =

 f1

f2

 , (13)

wheref1,2 = f1,2(U0, V0, ∂χ;α, β) are odd functions ofχ andM is the linear
operator

M =

 H1 2U0V0 + ν

2U0V0 − ν H2

 ,
with

H1 = −(µ+ γ)− ∂2
x + 3U2

0 + V 2
0 ,

H2 = −(µ− γ)− ∂2
x + 3V 2

0 + U2
0 .

8



ν

γ

1.5 2.5  
1.5

  

2.5

γ = γ
 b

γ = γ
 T

Fron
t in

sta
bil

ity
 

L 

Fig. 4. The transverse instability line,γ = γT , for an Ising front inside the 2:1 resonance
tongue. The dashed line denotes the approximate analytical result ofγT given by Eq. (24).
The crosses(×) depict the conditionD = 0 whereD is calculated semi-analytically us-
ing Eq. (20), while the solid circles(•) represent results of a numerical two-dimensional
eigenvalue analysis of the Ising front. Parameters:µ = 0.5, α = 0.35, β = 0.

Solvability of Eq. (13) requires the right hand side of this equation to be orthog-
onal to the null vectorΞ of M†, the adjoint ofM. We evaluatedΞ numerically
and found it to be an even function ofχ. Sincef1 andf2 are odd functions ofχ
the solvability condition is automatically satisfied. For the same reasonU1 andV1

must be odd too (i.e. they preserve the symmetry of the zero order approximation,
U0, V0).

Proceeding to orderε2 we find

M

U2

V2

 =

 (∂T1Λ− ∂2
Y Λ)U ′

0 + g1

(∂T1Λ− ∂2
Y Λ)V ′

0 + g2

 , (14)

where the prime denotes derivation with respect to the argument and

g1,2 = g1,2(U0, V0, U1, V1, ∂χ;α, β)

are odd functions ofχ. Solvability of Eq. (14) leads to

∂T1Λ = ∂2
Y Λ. (15)

Using Eq. (15) in Eq. (14) we conclude thatU2 andV2 are again odd functions of
χ (i.e. preserve the symmetry of the lower order approximations).
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(c)

(f)(e)(d)

(b)(a)

Fig. 5. A numerical solution of Eq. (6) in the rangeγb < γ < γT (point “L” in Fig. 4),
showing the development of a stationary labyrinthine pattern from a transverse insta-
bility of a planar Ising front. The pattern corresponds to resonant labyrinthine standing
waves in the original system. The frames (a-f) show theU field at successive time steps:
t = 0, 150, 250, 400, 600, 1400. Neumann boundary conditions were used on a domain
x = [0, 77], y = [0, 77]. Parameters:ν = 2.0, γ = 2.05, and other parameters as in Fig. 4.

Proceeding to orderε3 we find

M

U3

V3

 =

 ∂T2ΛU
′
0 + α (∂2

Y Λ)V ′
0 + (∂Y Λ)2 U ′′

0 + h1

∂T2ΛV
′
0 − α (∂2

Y Λ)U ′
0 + (∂Y Λ)2 V ′′

0 + h2

 , (16)

where
h1,2 = h1,2(U0, V0, U1, V1, U2, V2, ∂χ;α, β)

are odd functions ofχ. Solvability of Eq. (16), yields

∂T2Λ = −αΣ∂2
Y Λ , (17)

where

Σ =

∞∫
−∞

(Ξ1V
′
0 − Ξ2U

′
0)dχ

∞∫
−∞

(Ξ1U ′
0 + Ξ2V ′

0)dχ
, (18)

andΞ1 andΞ2 are the components of the null vectorΞ. Inserting Eqs. (15) and (17)
in Eq. (12) we obtain

∂tΛ = D∂2
yΛ , (19)
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where
D = 1− αΣ . (20)

The sign ofD determines the stability of the Ising front to transverse perturbations;
the front is stable (unstable) whenD > 0 (D < 0) and the conditionD = 0 gives
the instability thresholdγ = γT .

To evaluate this threshold we need to calculate the integrals in Eq. (18) which we
first do numerically. The calculation yields the solid circles in Fig. 4, which are in
good agreement with the results of a numerical two dimensional eigenvalue analy-
sis of the Ising front marked in Fig. 4 by crosses.

An approximate analytical expression forγT can be obtained if we restrict ourselves
to the high edge regime of the 2:1 tongue boundary [12],γ̂/γ � 1, and to the
vicinity of the Hopf bifurcation,µ/γ � 1. Under these conditions

M† ≈

H1 −ν

ν H2

 , (21)

and
Ξ1 ≈ U ′

0 , Ξ2 ≈ −V ′
0 . (22)

Inserting Eq. (22) in Eq. (18) we obtain

D ≈ 1− αν√
γ2 − ν2

. (23)

The threshold of the transverse instability,D = 0, now becomes

γT ≈ ν
√

1 + α2 . (24)

where the productνα is assumed to be positive. We found a good agreement be-
tween the analytical approximation (24) ofγT and the two-dimensional eigenvalue
analysis of the Ising front for small̂γ/γ as shown in Fig. 4 and for smallα values
as presented in Fig. 6.

4 Spatial patterns outside the 2:1 resonance tongue

In the previous section we related resonant patterns, within the 2:1 resonance tongue,
to the existence of Ising fronts. The patterns take the form of large stationary do-
mains, possibly coexisting with stripe patterns, in the range where the Ising front is
transversely stable, and appear as labyrinths beyond the transverse front instability.
Surprisingly, these resonant labyrinthine patterns persist outside the 2:1 resonance
tongue (γ < γb) where Ising front solutions no longer exist [16,20]. Figure 7 shows
how an asymptotic stationary labyrinthine pattern develops outside the resonance

11



0  0.1 0.2 0.3 0.4 0.5
2  

2.2

α

γ
 T

Fig. 6. The transverse instability threshold,γT , as a function of α. The solid
curve represents the approximation ofγT given by Eq. (24) and the crosses de-
note results of the two-dimensional eigenvalue analysis of the Ising front. Parameters:
µ = 0.5, ν = 2, β = 0.

tongue. The asymptotic pattern is very similar to that obtained inside the 2:1 reso-
nance tongue (see Fig. 5). The formation mechanism, however, is different; initial
nuclei expand through successive stripe by stripe growth into the surrounding un-
locked oscillations.

In this section we investigate the conditions and mechanisms that give rise to sta-
tionary solutions of Eq. (6), or resonant patterns of the original system, outside the
2:1 resonance tongue. We further study their existence range and their stability to
secondary instabilities such as zigzag. We find two different realizations of station-
ary patterns outside the 2:1 tongue: (i) the stationary patterns coexist with stable
unlocked uniform oscillations, (ii) the stationary patterns are the only attractor.

In Ref. [20] we identified a codimension 2 point where the Hopf bifurcation to
uniform oscillations coincides with a finite wavenumber instability of theA = 0
rest state. In the following we show, using a weakly nonlinear analysis, how the
two realizations of resonant standing waves outside the 2:1 tongue relate to the
coupling between a Hopf mode(k0 = 0, ω0 6= 0) and a finite-wavenumber Turing
mode(k0 6= 0, ω0 = 0). We further show that these standing waves are unstable to
zigzag perturbations as Fig. 15 indicates. With appropriate initial conditions they
may appear indistinguishable from the labyrinthine patterns inside the 2:1 tongue.

We begin with a linear stability analysis of the rest state,(U, V ) = (0, 0), to inho-
mogeneous perturbations of the form

U
V

 =

uk
vk

 eσt+ikx . (25)
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(f)(e)(d)
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Fig. 7. A numerical solution of Eq. (6) in the rangeγ < γb (but sufficiently close to
γb), showing the gradual nucleation of a stationary pattern from uniform oscillations os-
cillations. The uniform oscillations correspond, in the original system, to unlocked os-
cillations while the asymptotic stationary pattern corresponds to resonant labyrinthine
standing waves. Note that the resonant labyrinthine pattern exists in a range where uni-
form oscillations are not resonant. The frames (a)-(f) show theU field at successive
time steps:t = 0, 4, 8, 13, 18, 1400. Neumann boundary conditions were used on a
x = [0, 77], y = [0, 77] physical grid. Parameters:µ = 0.5, ν = 2.0, α = 0.5, β = 0 and
γ = 1.95.

Inserting this form in Eq. (6) we obtain the dispersion relation

σ(k) = µ− k2 +
√
γ2 − (ν − αk2)2 . (26)

At the codimension 2 point,µ = 0, γ = γc, where

γc =
ν√

1 + α2
, (27)

the Hopf (k = 0, ω = ω0) and the Turing (k = k0, ω = 0) modes simultaneously
become marginal as Fig. 8 shows. The wavenumberk0 and the frequencyω0 are
given by

k2
0 =

να

1 + α2
, (28a)

ω0 =
να√

1 + α2
. (28b)
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Note that if we restrict ourselves to the high frequency edge of the 2:1 tongue
(ν > 0) we must chooseα > 0. Also, if we want the codimension 2 point to lie
outside the 2:1 tongue we have to chooseβ < α for at β = α the Turing mode
becomes marginal at the tongue boundary, i.e.γc = γb.

Re σ

0 1.5
−1

0

0.5

 k
0
  k 

Hopf
mode

Turing
 mode 

Fig. 8. The growth rate (real part ofσ) of perturbations around theA = 0 state at the codi-
mension 2 point,µ = 0, γ = γc. Two modes become marginal at this point, a Hopf zero-k
mode and a Turing finite-k mode. Parameters:µ = 0, ν = 2.0, α = 0.5, γ = γc ≈ 1.8.

4.1 Amplitude equations for the Hopf-Turing bifurcation

In the vicinity of the codimension 2 point, whered := γ − γc ∼ µ � 1, we can
expand solutions of Eq. (6) as

U
V

 =
√
µ

U0

V0

+ µ

U1

V1

+ µ3/2

U2

V2

+ · · · , (29)

where U0

V0

 = e0B0e
iω0t + ekBke

ik0x + c.c. . (30)

We assume that̃d := d/µ and γc are of order unity. The complex amplitudes
B0 (X, Y1, T ) andBk (X, Y2, T ) in Eq. (30) describe weak spatiotemporal modula-
tions of the (relatively) fast oscillations associated with the Hopf mode and of the
strong spatial variations associated with the Turing mode. The weak dependence is
expressed by the introduction of the slow variablesT = µt, X =

√
µx, Y1 =

√
µy

andY2 = µ1/4y. The different scales used for they coordinate stem from the differ-
ent states (uniform vs. stripes) the amplitudes modulate [34–36]. The eigenvectors
e0 andek correspond to the eigenvaluesσ(0) andσ(k0), respectively, and are given

14



by

e0 =

 (1 + iα)/ρ

1

 , ek =

 η
1

 ,

whereρ =
√

1 + α2 andη = α+ ρ.

Inserting the expansion (29) in Eq. (6) we obtain at orderµ

M

U1

V1

 = −
(
2∂X∂x + ∂2

Y2

)U0 − αV0

αU0 + V0

 , (31)

where

M =

−∂t + γc + ∂2
x −ν − α∂2

x

ν + α∂2
x −∂t − γc + ∂2

x

 .
Defining an inner product as

〈f, g〉 :=
ω0k0

(2π)2

∫ ∫
f ∗g dXdT , (32)

where the integrals are evaluated over the temporal oscillation period and over the
stripe wavelength, the adjoint operator is

M† =

 ∂t + γc + ∂2
x ν + α∂2

x

−ν − α∂2
x ∂t − γc + ∂2

x

 , (33)

and its null vector is

Ξ =

−(1 + iα)/ρ

1

 e−iω0t +

 1

α− ρ

 e−ik0x . (34)

The solvability condition associated with Eq. (31) is automatically satisfied and we
can proceed to solving this equation. We findU1

V1

 = C

U0

V0

+


 0

ρ3/ν

DBke
ik0x + c.c.

 . (35)

whereD = 2ik0∂X + ∂2
Y2

andC is an arbitrary constant which for simplicity we
set to zero.
Proceeding to orderµ3/2 we obtain

M

U2

V2

 = (N0 − L0)

U0

V0

− L1

U1

V1

 , (36)
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where

L0 =

 1 + d̃+ ∂2
X − ∂T −α∂2

X

α∂2
X 1− d̃+ ∂2

X − ∂T

 ,
N0 = (U2

0 + V 2
0 )

 1 −β

β 1

 ,
L1 =

(
2∂X∂x + ∂2

Y2

)  1 −α

α 1

 .
Solvability of Eq. (36) yields two coupled equations for the amplitudesB0 andBk:

∂TB0 =
(
1− i

α
d̃
)
B0 − (4 + im1)|B0|2B0 − (8ρη + im2)|Bk|2B0 (37a)

+(1 + iρ)
(
∂2
X + ∂2

Y1

)
B0 ,

∂TBk =
(
1 +

ρ

α
d̃
)
Bk − 6ρη

(
1− β

α

)
|Bk|2Bk − 4

(
2− 3

β

α

)
|B0|2Bk

− ρ2

2k2
0

(
2ik0∂X + ∂2

Y2

)2
Bk , (37b)

where

m1 = 2 (2ρ2 + 1) β/αρ,

m2 = 4[2αρ(α+ 1) + (3ρ+ α)]β/α− 4η.

Finally, by rescaling Eqs. (37) back to the relatively fast space-time scales we obtain
the following approximation to Eq. (6) in the vicinity of the codimension 2 point:U

V

 = e0A0e
iω0t + ekAke

ik0x + c.c.+ ... . (38)

where the ellipses denote high order corrections and the amplitudesA0 andAk
satisfy

∂tA0 =
(
µ− i

α
d
)
A0 − (4 + im1)|A0|2A0 − (8ρη + im2)|Ak|2A0

+(1 + iρ)∇2A0 , (39a)

∂tAk =
(
µ+

ρ

α
d
)
Ak − 6ρη

(
1− β

α

)
|Ak|2Ak − 4

(
2− 3

β

α

)
|A0|2Ak

− ρ2

2k2
0

(
2ik0∂x + ∂2

y

)2
Ak . (39b)
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4.2 Hopf and Turing pure-mode solutions

Equations (39) admit two families of pure-mode solutions and a mixed-mode solu-
tion [37,38]. The pure-mode solutions are

Ã0 =
1

2

√
µ−K2ei(Kx−ϑt)+iψ0 , Ãk = 0 ; (40a)

and

Ã0 = 0 , Ãk =

√√√√αµ+ dρ− 2αρ2K2

6ρη(α− β)
eiKx+iψk . (40b)

The phasesψ0 andψk are arbitrary constants which we set to zero andϑ = d/α +
µm1/4. In the context of the original system, the uniform-oscillation solution (40a)
corresponds to unlocked uniform oscillations, while the stationary uniform solu-
tion (40b) represents resonant standing -waves.

We first study the linear stability of the uniform(K = 0) solutions (40a) and (40b)
by reducing the system (39) to equations for the absolute values of the amplitudes
A0 andAk [39]:

Ṙ0 = µR0 − 4R3
0 − 8ρηR2

kR0 ,

Ṙk = (µ+ d/α)Rk − 6ρη(1− β/α)R3
k − 4(2− 3β/α)R2

0Rk ,
(41)

whereR0 := |A0| andRk := |Ak|. Figure 9 shows bifurcation diagrams for the uni-
form oscillatory and stationary solutions (40a) and (40b) as obtained by analyzing
Eqs. (41). The stationary solution (40b) exists aboveγe where

γe = γc −
µα√

1 + α2
=

ν − µα√
1 + α2

, (42)

and becomes stable atγ = γS where

γS = γc −
µ(α+ 3β)

4
√

1 + α2
=
ν − µ(α+ 3β)/4√

1 + α2
. (43)

The oscillatory solution (40a) exists for allγ < γb (providedµ > 0) but the stability
of this solution depends on the value ofβ. Forβ < βB, whereβB is defined below,
the oscillatory solution is stable up to the tongue boundaryγ = γb. Forβ > βB the
stability range of (40a) reduces toγ < γH whereγH is smaller thanγb and is given
by

γH = γc +
µ(α− 3β)√

1 + α2
=
ν + µ(α− 3β)√

1 + α2
. (44)
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The value ofβB is determined by the conditionγH = γb which leads to the follow-
ing quartic equation forβB:

[ν + µ(α− 3βB)]
√

1 + β2
B − [ν − µβB]

√
1 + α2 = 0. (45)

The mixed mode solution and its stability properties will be studied elsewhere [40].
We only note here that this solution is unstable as long asγH > γS which is realized
for β < βM where

βM =
5

9
α. (46)

Using these results we can distinguish among three stability ranges forβB < β <
βM :

(i) γ < γS, where only the oscillatory solution (40a) is stable;
(ii) γH < γ < γb, where only the stationary solution (40b) is stable;
(iii) γS < γ < γH , where both solutions (40) are stable.

Whenβ < βB the range (ii) disappears and the bistability range (iii) extends to the
tongue boundaryγ = γb.
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  Mixed               
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0
, A

k
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Turing        
(0, A

k
 )

Fig. 9. Bifurcation diagrams for uniform solutions of Eq. (39) showing the existence and
stability ranges of the two pure mode solutions and the mixed mode solution in a forcing

range extending to the tongue boundaryγ = γb. The vertical axis isR =
√

R2
0 + R2

k. The
solid (dashed) curves denote stable (unstable) solutions. In (a)β < βB and the oscillatory
solution (Ã0, 0) is stable up to the tongue boundary. In (b)β > βB and the oscillatory
solution loses stability atγ = γH < γb. Parameters:µ = 0.5, ν = 2, α = 0.5, (a)β = 0,
and (b)β = 0.1.

To test the amplitude equations (39) we compared the prediction of Eq. (43) forγS
(the instability threshold for stationary stripes) with numerical solutions of Eq. (6).
Figure 10 indicates a good agreement forν values of order unity. A deviation devel-
ops at smallν values, but whenν ∼ µ, Bk varies on the scalek−1

0 and the analysis
is no longer valid.
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1.5

ν

γ
 S

Fig. 10. The stability thresholdγS for resonant standing-wave solutions. The solid line
describes Eq. (43) while the solid circles represent results of numerical solutions of Eq. (6).
The parameter values are the same as in Fig. 4.

4.3 Hopf-Turing competition

Using the stability results described above we can distinguish between two different
realizations of resonant standing waves (of the original system) outside the 2:1
tongue boundary. Whenβ > βB there is a range just below the tongue boundary,
γH < γ < γb, where unlocked uniform oscillations are unstable and resonant
standing waves are the only stable state. In this case, resonant behavior develops no
matter what the initial conditions are. Whenβ < βB resonant standing waves and
unlocked oscillations coexist as stable states in a range,γS < γ < γb, extending up
to the tongue boundary. In this case the realization of resonant behavior depends on
initial conditions.

To gain some insight about the initial conditions that lead to resonant behavior in
the caseβ < βB we consider front solutions of Eq. (39) which are bi-asymptotic to
the two coexisting states(Ã0, 0) and(0, Ãk). The direction of the front propagation
determines which of the two states invades into the other and prevails at long times.
We therefore look for the threshold value,γ = γN , at which the Hopf–Turing front
has a zero velocity. An analytical expression for the Hopf–Turing front velocity has
been found in Ref. [41]. Using this result we find

γN = γc +
µα(

√
3/2− 1)

√
1 + α2

=
ν + µα(

√
3/2− 1)

√
1 + α2

. (47)

Figure 11 shows the lineγN in theν − γ plane, as obtained from Eq. (47) and the
the good agreement of this result with numerical solutions of Eq. (39). Forγ > γN
the(0, Ãk) state invades the(Ã0, 0) state as Fig. 12 demonstrates. This dominance
of the (0, Ãk) state implies that any initial state involving at least one island of
resonant standing waves is likely to evolve into a resonant standing-wave pattern
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occupying the whole system. Forγ < γN the(Ã0, 0) state is the dominant one and
the asymptotic state is unlocked oscillations.

ν

γ

0.4 1
0.4

1

γ=γ
 N

 γ=γ
 b

 

Fig. 11. Dominance range of resonant standing waves outside the 2:1 resonance tongue for
β < βB. ForγN < γ < γb standing waves,(0, Ãk), invade unlocked oscillations,(Ã0, 0),
and become the asymptotic pattern (see Fig. 12). The solid lineγ = γN describes Eq. (47)
while the solid circles represent results of numerical solutions of Eq. (39). Parameter values
are the same as in Fig. 4.

 t 

 x
Fig. 12. Invasion of resonant standing waves into unlocked oscillations, obtained by nu-
merical integration of Eq. (39) in the rangeγN < γ < γb. The solution represents the real
part of (U0, V0) reconstructed according to Eq. (30). Neumann boundary conditions were
used. This behavior reproduces the results of Fig. 7 obtained by solving Eq. (6) with the
same parameter values.
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Returning to Fig. 7 which shows the development of standing-wave patterns out-
side the 2:1 tongue we can now interpret the stripe by stripe growth mechanism as
an invasion of the(0, Ãk) state (standing waves) into the(Ã0, 0) (unlocked oscil-
lations). Fig. 7 applies to the caseβ < βB where the two states stably coexist and
to γ > γN . Whenβ > βB similar stripe by stripe growth can be realized, but un-
like the former case, standing waves develop from any initial condition even in the
absence of an initial(0, Ãk) island that serves as a nucleation center. The growth
mechanism of standing wave patterns outside the 2:1 tongue is very different from
the fingering and tip splitting mechanism that applies inside the tongue [see Fig. 5].
The asymptotic patterns, however, may look very similar as a comparison of Fig. 5
and Fig. 7 suggests. This is partly because the standing wave stripes are unstable to
zigzag perturbations as we now show.

4.4 Zigzag instability of the pure Turing mode

Consider the stationary periodic stripe solution given by Eq (40b). To study the
stability of this solution to zigzag perturbations [36], we write

A0

Ak

 =

 0

Ãk

+

 δA0

δAk

 , (48)

where  δA0

δAk

 =

 a0+(t)

ak+(t)

 ei(Kx+Qy) +

 a∗0−(t)

a∗k−(t)

 ei(Kx−Qy).
Inserting Eq. (48) in Eq. (39), and linearizing around(0, Ãk) we obtain two sets of
ordinary differential equations

ȧ0± = [µ−WP −Q2 − iM ] a0± ,

ȧk± = −
[
P + ρ2

2k2
0
(4k0KQ

2 +Q4)
]
ak± − Pak∓ ,

(49)

whereP = µ+ ρd/α− 2ρ2K2, W = 4α/[3(α− β)] andM = d/α+m2|Ãk|2 +
ρ(K2 +Q2). Seeking solutions of Eq. (49) in the form

a0± = ã0±e
λ0t, (50a)

ak± = ãk±e
λkt, (50b)

we find the following expressions for the perturbation growth rates:
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Reλ±0 =µ−WP −Q2, (51a)

λ±k =− ρ2

2k2
0

(
4k0KQ

2 +Q4
)
− P ± P. (51b)

The first mode to grow is the Turing phase mode whose growth rate is given by
λ+
k (Q). The long-wavelength zigzag instability sets in atK = 0 and exists any-

where in the parameter ranges we consider (for whichµ > 0 andνα > 0). Fig-
ure 13 shows the dispersion relationλ+

k (Q) at the onsetK = 0 and beyond the in-
stabilityK < 0. The maximal growth rate beyond the instability occurs atQ = Q0

where
Q2

0 = −2k0K. (52)

Figure 14 summarizes the results of the linear stability analysis of stationary stripe

λ+
 k

 Q0 0.4
−0.01

0 

0.01

 Q
0
 

Fig. 13. Growth curves for the zigzag instability of the stationary-stripe solution Eq. (40b).
Shown are the growth ratesλ+

k , as computed from Eq. (51b), at the instability threshold
K = 0 (dashed curve) and beyond the instabilityK = −0.05 (solid curve). Other parame-
ters:ν = 2.0, α = 0.5 .

solutions (standing waves in the original system) in theγ − K parameter space.
The periodic stripe solutions (40b) form at the parabolic dashed curve given by

γ̃e = γe + 2αρK2 . (53)

Below the solid parabolic curve,γ = γ̃S, where

γ̃S = γS + 2αρK2 . (54)

the stripe solutions are unstable to uniform oscillations or traveling waves (Reλ±0 >
0). Above this curve stationary stripe patterns become stable but may go through
secondary zigzag and Eckhaus instabilities as depicted in the figure. (The Eckhaus
instability analysis will be presented elsewhere [27]). Numerical solutions of the
forced CGL equation (6) support the above predictions. The stripes are stable for
positiveK values (that do not cross the Eckhaus instability) while for negativeK
values (see point “Z” in Fig. 14) the stripes are unstable to zigzag perturbations
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as Fig. 15 demonstrates. Asγ is reduced below̃γS (see point “O” in Fig. 14) the
stationary stripes loose stability to oscillations, as Fig. 16 demonstrates.

−0.6 −0.2 0 0.6

1.6

2

 K

 γ

 γ
b
 

 γ
c
 

zig−zag
stripes 

  o s c i l l a t i o n s    

 γ
S
 

Z 

O 

Eckhaus

 γ
e
 

Fig. 14. The neutral stability curve for stationary stripes (thick solid curve) and their sec-
ondary zigzag and Eckhaus instabilities (thin solid curves). Stationary stripe solutions ap-
pear at the dashed parabolic curve but becomes stable only above the solid parabolic curve.
In between the two curves uniform oscillations and traveling waves prevail. The points
“Z” ( γ = 1.95, K = −0.2) and “O” (γ = 1.77, K = −0.2) represent forcing and
wavenumber values where the stripe solutions are unstable to zigzag and oscillating pat-
terns, respectively. All the other parameters are the same as in Fig. 7.

Fig. 15. Numerical solution of the forced CGL equation (6) for negative deviations from
k0 (K = −0.2), showing the development of a zig–zag pattern (point “Z” in Fig. 14). The
frames (left to right) correspond tot = 1, 300, 400. Periodic boundary conditions were
used on ax = y = [0, 51] physical grid. Parameters are as in Figure 14ν = 2, γ = 1.95.
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 x
Fig. 16. Numerical solution of the forced CGL equation (6) for negative deviations fromk0

(K = −0.2), showing in a space-time plot the development of oscillations (point “O” in
Fig. 14). Neumann boundary conditions were used. Parameters are as in Figure 14,ν = 2,
γ = 1.77, x = [0, 64] andt = [0, 60].

5 Discussion

We have presented a theoretical study of resonant patterns in oscillatory systems
that are subjected to uniform time-periodic forcing at a frequency about twice as
large as the unforced system’s frequency. The study is based on the amplitude equa-
tion for forced systems undergoing a Hopf bifurcation to uniform oscillations. Res-
onant patterns are defined in this paper as spatiotemporal patterns where the oscil-
lation frequency at any spatial point is exactly half the forcing frequency.

We find that the range of resonant patterns in the forcing amplitude and frequency
ν−γ plane does not coincide with the 2:1 resonance tongue of uniform oscillations.
Below the NIB bifurcation, non-resonant traveling waves prevail. Above the NIB
bifurcation resonant standing waves prevail, but these extend beyond the tongue of
uniform oscillations. Forβ > βB there exists a range,γH < γ < γb, outside the
2:1 tongue where resonant standing waves are the only stable patterns. Forβ < βB
resonant standing waves outside the 2:1 tongue coexist with unlocked oscillations.
In the rangeγN < γ < γb, however, the standing-wave patterns are dominant in the
sense that nuclei of standing waves grow into unlocked oscillations and become the
asymptotic state of the system.

Figure 17 summarizes the regions in theν−γ plane where resonant patterns prevail
along with the 2:1 tongue inside which frequency-locked uniform oscillations exist.
The boundaryγ = γNIB, inside the 2:1 tongue, appears to merge with the line
γ = γN outside the 2:1 tongue and form together the boundary of the region of
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resonant patterns. More careful analysis is needed, however, to substantiate this
numerical observation.

ν

γ

−1 1
0

1

γ = γ
 NIB

 γ = γ
 N

 
γ = γ

 b

  Frequency locked  
          patterns

Fig. 17. The 2:1 resonance tongue of uniform oscillations (the dashed boundary) vs. the
tongue of resonant patterns (the shaded area with solid boundary). Parameters are as in
Fig. 1(b).

The resonant standing waves outside the tongue are zigzag unstable and may appear
as labyrinthine patterns with appropriate initial conditions [20]. These labyrinths
appear indistinguishable from the labyrinths that prevail inside the 2:1 tongue.
Their formation mechanism however is quite distinct. While labyrinths inside the
tongue develop from a transverse front instability through fingering and tip split-
ting (see Fig. 5), labyrinths outside the tongue develop through stripe by stripe
nucleation from standing-wave nuclei (see Fig. 7). The two mechanisms have been
identified recently in experiments on the Belousov-Zhabotinsky reaction [20].

The results described in this paper are restricted to a relatively small volume in
the parameter space spanned byµ, ν, α, β, γ. The analysis is based on the forced
complex Ginzburg-Landau equation which is valid close to the Hopf bifurcation.
We therefore avoided largeµ values. The study was originally motivated by exper-
imental observations of resonance labyrinthine patterns on the high right edge of
the 2:1 resonant tongue [12]. Accordingly we choseν to be positive and following
Eq. (28),α > 0. We also choseα andβ to be small (and of the same order of magni-
tude) to facilitate the analysis of the transverse Ising front instability. We confined
ourselves to the caseβ < 5α/9 for which resonant standing waves exist outside
the 2:1 resonance tongue. The caseβ > 5α/9 will be considered elsewhere [40].
Different parameter ranges have been studied in Refs. [16,42] (ν < 0, α < 0), and
in Ref. [17] (α� β ∼ µ).
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